30 AMP MINIATURE POWER RELAY

FEATURES

- DPST-NO and DPDT configuration
- Meets 8 mm creepage, 4 kV dielectric
- Epoxy sealed versions available
- UL Class F $\left(155^{\circ} \mathrm{C}\right)$ standard
- UL, CUR file E44211
- VDE certificate 40023442

CONTACTS

Arrangement	DPST (2 Form A) DPDT (2 Form C)
Ratings	Resistive load: Max. switched power: 560 W or 8310 VA Max. switched current: 30 A (N.O), 3 A (N.C.) Max. switched voltage: 30 VDC* or 600 VAC *Note: If switching voltage is greater than 30VDC, special precautions must be taken. Please contact the factory.
Rated Load UL VDE	Normally open contacts (N.O.) 30 A at 277 VAC General Use, 100k cycles [1][2] 10 A at 600 VAC, General Use, 6k cycles [1] 1 HP at $120 \mathrm{VAC}, 100 \mathrm{k}$ cycles [1][2] 2.5 HP at 240 VAC, 100 k cycles [1][2] 8 FLA / 26 LRA at $277,480,600$ VAC, 30 k cycles [1] Normally open contacts (N.O.), DC Coils only 25.3 FLA / 110 LRA at 240 VAC, 30 k cycles [1][2] Normally closed contacts (N.C.) 3 A at 277 VAC, General Use, 100k cycles [1][2] 2 A at 480 VAC, General Use, 6 k cycles [1] 1 A at 600 VAC, General Use, 6 k cycles [1] 3 FLA / 3 LRA at 240 VAC, 30k cycles [1] 2 FLA / 2 LRA at 277,480 VAC, 30 k cycles [1] 1 FLA / 1 LRA at 600 VAC, 30k cycles [1] Normally open contacts (N.O.) 20 A at 250 VAC, Resistive, 50k cycles [2] Normally closed contacts (N.C.) 3 A at 250 VAC, Resistive, 50k cycles [2]
Material	Silver cadmium [1], silver tin oxide [2]
Resistance	<50 milliohms initially ($6 \mathrm{~V}, 1 \mathrm{~A}$ voltage drop method)

COIL

Power	
At Pickup Voltage	$925 \mathrm{~mW}, \mathrm{DC}$ coil
(typical)	$2.6 \mathrm{VA}, \mathrm{AC}$ coil
Max. Continuous	5.0 W at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$ ambient, DC coil
Dissipation	7.0 VA at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$ ambient, AC coil
Temperature Rise	$48^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$ at nominal coil voltage, DC coil
	$68^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ at nominal coil voltage, AC coil
Temperature	Max. $155^{\circ} \mathrm{C}\left(311^{\circ} \mathrm{F}\right)$

GENERAL DATA

Life Expectancy Mechanical Electrical	Minimum operations $\begin{aligned} & 5 \times 10^{7} \\ & 1 \times 10^{5} \text { at } 30 \text { A } 277 \text { VAC Res. (N.O.) } \end{aligned}$
Operate Time	15 ms typical 25 ms maximum with bounce
Release Time	10 ms typical 25 ms maximum with bounce (with no coil suppression)
Dielectric Strength (at sea level for 1 min .)	1500 Vrms contact to contact 4000 Vrms contact to coil 2000 Vrms between contact sets
Insulation Resistance	10^{9} ohms minimum at 500 VDC
Dropout	DC: Greater than 10% of nominal coil voltage AC: Greater than 20% of nominal coil voltage
Ambient Temperature Operating Storage	At nominal coil voltage DC: $-40^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right)$ to $85^{\circ} \mathrm{C}\left(185^{\circ} \mathrm{F}\right)$ AC: $-40^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right)$ to $65^{\circ} \mathrm{C}\left(149^{\circ} \mathrm{F}\right)$ $-40^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right)$ to $105^{\circ} \mathrm{C}\left(221^{\circ} \mathrm{F}\right)$
Vibration	0.062 " (1.5 mm) DA at $10-55 \mathrm{~Hz}$
Shock	Operational, 10 g for $11 \mathrm{~ms} 1 / 2$ sine pulse (no contact opening > 100usec) Non-destructive, 100 g for $11 \mathrm{~ms} 1 / 2$ sine pulse
Enclosure	P.B.T. polyester
Terminals	Quick connect tabs Note: Allow suitable slack on leads when wiring, and do not subject the terminals to excessive force.
Max. Solvent Temp.	$80^{\circ} \mathrm{C}\left(176{ }^{\circ} \mathrm{F}\right)$
Max. Immersion Time	30 seconds
Weight	86 grams
Packing unit in pcs	20 per plastic tray / 100 per carton box

NOTES

1. All values at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$.
2. Relay may pull in with less than "Must Operate" value.
3. Specifications subject to change without notice.

RELAY ORDERING DATA

COIL SPECIFICATIONS - DC Coil					
Nominal Coil VDC	Must Operate VDC	Max. Continuous VDC	Nominal Current mA $\pm \mathbf{1 0 \%}$	Coil Resistance Ohm $\pm 10 \%$	ORDER NUMBER*
6	4.5	10.5	272.0	22	AZ2800-2C-6D
12	9.0	20.7	140.0	86	AZ2800-2C-12D
24	18.0	41.8	68.5	350	AZ2800-2C-24D
48	36.0	83.4	34.5	1390	AZ2800-2C-48D
110	82.5	190.5	15.2	7255	AZ2800-2C-110D

COIL SPECIFICATIONS - AC Coil						
Nominal Coil VAC	Must Operate VAC	Max. Continuous VAC	Nominal Curent $\mathbf{m A} \pm \mathbf{1 0 \%}$	50Hz Coil Resistance Ohm $\pm \mathbf{1 0 \%}$	60Hz Coil Resistance Ohm $\pm \mathbf{1 0 \%}$	ORDER NUMBER*
12	9.6	15.6	340.0	9.5	8	AZ2800-2C-12A
24	19.2	31.2	166.0	45	35.7	AZ2800-2C-24A
120	96.0	156.0	33.3	1125	830	AZ2800-2C-120A
220	176.0	286.0	18.2	3800	2870	AZ2800-2C-220A
240	192.0	312.0	16.7	4500	3800	AZ2800-2C-240A
277	221.6	360.1	14.4	5960	4700	AZ2800-2C-277A

* Substitute " 2 A " in place of " 2 C " to indicate 2 Form A contacts.
" $2 A$ " or " $2 C$ " denotes silver cadmium contacts.
Add suffix "E" to " $2 A$ " or " $2 C$ " for silver tin oxide contacts.
Add suffix " 5 " for 50 Hz coil, AC coils only. (Example: AZ2800-2C-24A5)
Add suffix "E" at the end of order number for sealed version.
Add suffix " K " for 0.187 " x 0.020 " [$4.8 \mathrm{~mm} \times 0.5 \mathrm{~mm}$] coil terminals.

MECHANICAL DATA

Dimensions in inches with metric equivalents in parentheses. Tolerance: $\pm .010^{\prime \prime}$

