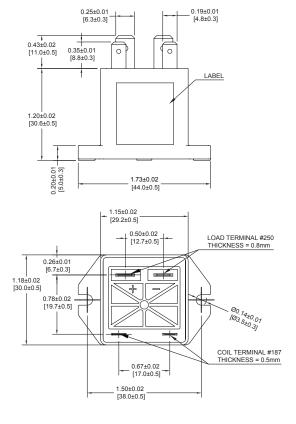


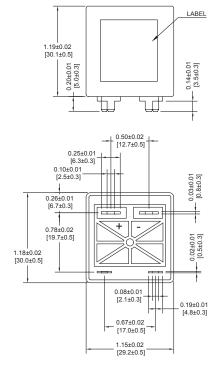
Certification Information

Meets RoHS (2011.65/EU)

Nomenclature:



Outline Dimensions: Inches (mm)



AEV20E

AEV20E(P)

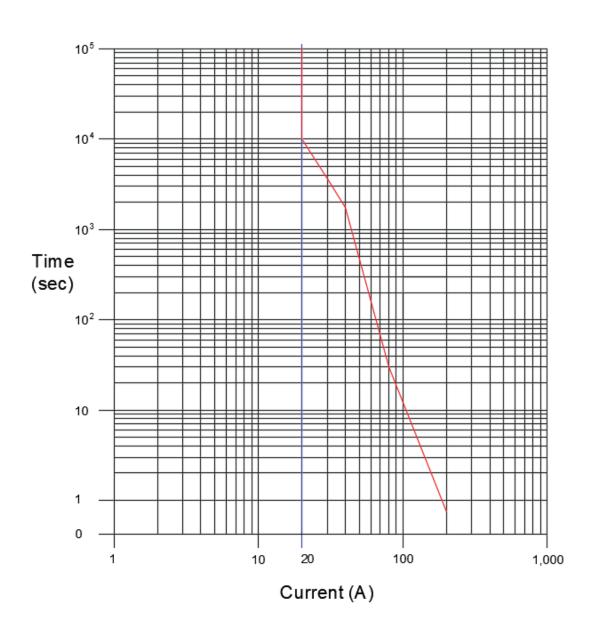
NOTE: There is a "+" and "-" mark on the cover of the product to show the polarity of the load, the coil has no polarity.

Performance Data

MAIN CONTACTS DATA			EXPECTED LIFE		
Contact arrangement		1 Form A (SPST-NO)	Electrical Endurance (Make/Break) 20A@450VDC	5,000 Cycles	
Max. Switching Voltage		750VDC		5,000 Cycles	
Rated Current		20A	Electrical Endurance (Make/Break) 10A@450VDC	10,000 Cycles	
Short Term Current		30A (1h)			
Dielectric Withstanding Voltage (Initial)	Between Open Contacts	2500 VAC/1mA/1min.	Electrical Endurance (Make Only) 20A@450VDC	75,000 Cycles	
	Between Contacts To Coil	3000 VAC/1mA/1min.			
Insulation Resistance (Initial)	Terminal to Terminal	Min. 1000 MΩ@500Vdc	Mechanical Life	200,000 Cycles	
	Terminals to Coil	Min. 1000 MΩ@500Vdc			
Voltage Drop (initial)		≤50mV/10A)			
Limit Breaking		30A@450VDC, 5 Cycle			
ENVIRONMENTAL DATA			OPERATE & RELEASE	ETIME	
Shock	Functional	196m/s² Sine half-ware pulse	Operate Time	≤30ms	
	Destructive	490m/s² Sine half-ware pulse	Release Time	≤10ms	
Operating Temperature		-40 to +85°C			
Humidity		5% to 85%RH			
Weight		0.11 Lb. (50g)			

Characteristics

COIL DATA					
Nominal Voltage	12 Vdc	24 Vdc			
Pick-up Voltage (23°C)	≤ 9 Vdc	≤ 18 Vdc			
Drop-out Voltage (23°C)	≥ 0.8 Vdc	≥ 1.6 Vdc			
Coil Power (20° C Nominal Voltage)	3W	3W			
Rated Coil Resistance ±10% (23°C)	48Ω	192Ω			


Note:

- 1. Do not meet dielectric & IR after the test.
- 2. ON:OFF = 1s:9s.
- 3. The ambient environment of application should not cause any dewing or icing inside the relay. Otherwise, the relay may fail to work consequently.

Performance Data:

(1) I-T Carry current performance (85°C), the cross section area of wire is ≥4mm2, the provider data are used for reference only.

Application Notes:

- 1. Please use M3 screws for mounting.
 - Mounting torque: 0.8~1.1N. m.
- 2. Maximum allowable (push-on) force of the terminals is 49N.
- 3. PCB soldering parameters:
 - Manual soldering, 380±20°C, time (3~5)s.
 - Wave soldering 265±5°C, time (3~8)s.
- **4.** Products with polarity marked on the load end must be used correctly according to the product marking. When the load connection polarity is reversed, the electrical characteristics promised in this manual cannot be guaranteed.
- **5.** Avoid installing the contactor in a strong magnetic field environment (near transformers or magnets) and avoid placing the contactor near objects with heat radiation.
- **6.** When continuous current is applied to the contacts of the relay, and the Coil is turned on immediately after the power is cut off. At this time, as the temperature of the coil increases, the resistance of the coil will also increase, which will increase the pull-in voltage of the product, which may result in exceeding the rated Pull-in voltage. In this case, the following measures should be taken to reduce the load current; limit the continuous power-on time or use a coil voltage higher than the rated pull-in voltage.
- **7.** When the voltage applied to the coil exceeds the maximum allowable applied voltage, the coil temperature may rise and lead to coil damage and inter-layer short circuit.
- **8.** The rated values in the contact parameters are values for a resistive load. When using an inductive load with L/R>1ms, please connect a surge current protection device to the inductive load in parallel. If no measures are taken, the electrical life may be reduced and the continuity may be poor. Please consider sufficient margin space in the design.
- 9. Supply power must be greater than coil power or it will reduce performance capability.
- **10.** The load conductor must have the corresponding current load capacity and heat dissipation capacity (it is recommended to use wire with min 4mm2), to prevent overheating and affecting the life of the contactor.
- **11.** Do not use if dropped.
- **12.** Is impossible to determine all the performance parameters of contactors in each specific application, therefore, customers should choose the products matching them according to their own conditions of use. If in doubt, contact Altran, however, the customer will be responsible for validating that the products meet their application.
- **13.** Altran reserves the right to make changes as needed. Customers should reconfirm the contents of the specification or ask for us to supply a new specification if necessary.

